Package: iBART 1.0.2
iBART: Iterative Bayesian Additive Regression Trees Descriptor Selection Method
A statistical method based on Bayesian Additive Regression Trees with Global Standard Error Permutation Test (BART-G.SE) for descriptor selection and symbolic regression. It finds the symbolic formula of the regression function y=f(x) as described in Ye, Senftle, and Li (2023) <https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2294527>.
Authors:
iBART_1.0.2.tar.gz
iBART_1.0.2.zip(r-4.5)iBART_1.0.2.zip(r-4.4)iBART_1.0.2.zip(r-4.3)
iBART_1.0.2.tgz(r-4.4-any)iBART_1.0.2.tgz(r-4.3-any)
iBART_1.0.2.tar.gz(r-4.5-noble)iBART_1.0.2.tar.gz(r-4.4-noble)
iBART_1.0.2.tgz(r-4.4-emscripten)iBART_1.0.2.tgz(r-4.3-emscripten)
iBART.pdf |iBART.html✨
iBART/json (API)
NEWS
# Install 'iBART' in R: |
install.packages('iBART', repos = c('https://mattsheng.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mattsheng/ibart/issues
- catalysis - Single-Atom Catalysis Data
- iBART_real_data - IBART Real Data Result
- iBART_sim - IBART Simulation Result
Last updated 5 months agofrom:00eefa7419. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win | OK | Nov 12 2024 |
R-4.5-linux | OK | Nov 12 2024 |
R-4.4-win | OK | Nov 12 2024 |
R-4.4-mac | OK | Nov 12 2024 |
R-4.3-win | OK | Nov 12 2024 |
R-4.3-mac | OK | Nov 12 2024 |
Exports:generate_unitiBARTk_var_model
Dependencies:bartMachinebartMachineJARscodetoolsdigestdoRNGforeachglmnetiteratorsitertoolslatticeMatrixmissForestrandomForestRcppRcppEigenrJavarngtoolsshapesurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Single-Atom Catalysis Data | catalysis |
A helper function to generate unit for iBART input | generate_unit |
iBART descriptor selection | iBART |
iBART Real Data Result | iBART_real_data |
iBART Simulation Result | iBART_sim |
Best subset selection for linear regression | k_var_model |